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ABSTRACT

Motivation: RNA-Seq experiments have shown great potential for
transcriptome profiling. While sequencing increases the level of
biological detail, integrative data analysis is also important. One
avenue is the construction of coexpression networks. Because the
capacity of RNA-Seq data for network construction has not been
previously evaluated, we constructed a coexpression network using
striatal samples, derived its network properties and compared it with
microarray-based networks.
Results: The RNA-Seq coexpression network displayed scale-
free, hierarchical network structure. We detected transcripts groups
(modules) with correlated profiles; modules overlap distinct ontology
categories. Neuroanatomical data from the Allen Brain Atlas
reveal several modules with spatial colocalization. The network
was compared with microarray-derived networks; correlations from
RNA-Seq data were higher, likely because greater sensitivity
and dynamic range. Higher correlations result in higher network
connectivity, heterogeneity and centrality. For transcripts present
across platforms, network structure appeared largely preserved.
From this study, we present the first RNA-Seq data de novo network
inference.
Contact: iancuo@ohsu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
RNA-Seq is a relatively new method for gene expression
analysis that has provided important insights into transcriptome
structure. The level of detailed biological insight available through
transcriptome sequencing is superior to microarray platforms,
most notably in detecting alternatively spliced isoforms (Wang
et al., 2008) and non-coding RNAs and small RNAs that are
not generally interrogated using microarray platforms. In addition,
RNA-Seq offers significantly higher levels of transcript accuracy
when compared to microarray platforms (Wang et al., 2009).
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While increasing our understanding of specific biological processes,
these new insights have also brought into focus the full extent of the
complexity of eukaryotic transcriptomes. In this context, integration
of RNA-Seq data into a systems-level framework of transcription
analysis is increasingly important.

Network analysis provides a productive approach to visualization
and analysis of high-throughput biological data. Transforming the
data into a graph/network framework offers distinct advantages,
allowing the adoption of techniques developed in graph theory,
engineering and computer science; these approaches can directly
relate specific biological interactions or disease states with the
network properties and dynamics (Chen et al., 2008; Farber, 2010;
Iancu et al., 2011; Muers, 2011; Mukhtar et al., 2011).

Gene coexpression networks have provided important insights
into the global structure of the transcriptome in a variety
of species (Oldham et al., 2006, 2008). The transcriptome
coexpression network displays many properties often associated
with biological and social networks: modularity, centralization,
heterogeneity and clustering (Dong and Horvath, 2007; Prifti
et al., 2010). As experimental techniques improve and the level of
technical/experimental noise decreases, improved estimates of these
parameters can be expected.

2 METHODS

2.1 Data selection and preprocessing
Detailed descriptions of RNA-Seq and microarray data-processing steps
have been published elsewhere (Bottomly et al., 2011); here, we provide
a brief outline of the procedures. All experimental procedures were
reviewed and approved by the Portland Veterans Affairs Medical Center
Institutional Animal Care and Use Committee under protocol ID VA1509.
The Illumina microarray data (Illumina MouseRef-8 v2.0) consisted of 24
male mice [12 C57BL/6 (B6) and 12 DBA/2 (D2)]; seven samples of each
strain were in common with the RNA-Seq data. The Illumina data were
analyzed using the lumi Bioconductor package and normalized using the
robust spline normalization procedure (Du et al., 2008). The Affymetrix
microarray data (Affymetrix MOE 430 2.0) consisted of 20 samples,
equally divided across genders and strains. These data were processed
using the Robust Multichip Average methodology as implemented in the
Affymetrix Bioconductor package, with background correction and quintile
normalization (Irizarry et al., 2003); a custom script was used for SNP
correction.
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The RNA-Seq data (Illumina GAIIx) consisted of 10 B6 and 11 D2 mice.
The reads were aligned using the Bowtie short read alignment program.
For the D2 mice, the reads were aligned to a SNP-corrected mouse genome
assembly based on the NCBI m37 assembly and SNPs obtained from the
Sanger Mouse Genome Project (http://www.sanger.ac.uk/resources/mouse/
genomes/). The counts were summarized relative to Ensembl 59 gene models
and the read counts were corrected using upper quartile normalization from
EdgeR (Robinson et al., 2010). Read count normalization and microarray
datasets are publicly available in the Gene Expression Omnibus database
(Edgar et al., 2002) under accession number GSE26064, while the RNA-
Seq data are publicly available through the ReCount data repository (Frazee
et al., 2011).

To compare analysis results across platforms, all datasets were restricted
to probes, probe sets and reads that correspond to Ensembl build NCBIm37
build 59 unique exons. In the microarray datasets, individual probes that
spanned a single nucleotide polymorphism between the B6 and D2 strains
were masked (Walter et al. 2009); probes deemed undetectable were also
removed. For the RNA-Seq data, genes with zero read counts in at least one
B6 and one D2 sample were removed.

2.2 Coexpression network construction and validation
The coexpression network construction steps follow the Weighted Gene
Coexpression Network Analysis approach (Zhang and Horvath, 2005),
using the available R implementation (Langfelder and Horvath, 2008).
Network construction is more robust for probes with high connectivity
(Fuller et al., 2007); therefore, we retained the probes with above median
connectivity, resulting in 3618 common probes. The basic quantity used
in constructing an unsigned coexpression network is the absolute value
of the Pearson correlation coefficient. The Pearson correlation matrix is
subsequently transformed into an adjacency matrix (A) using a power
function. The connection strength aij between transcripts xi and xj then
becomes aij =|corr(xi, xj)|β ; β =10 is selected in accordance with the
scale-free topology criterion (Zhang and Horvath, 2005). The ‘topological
overlap’ (TO) between two transcripts averages adjacency information over
several network ‘neighbors’ of the two transcripts (Ravasz et al., 2002;
Zhang and Horvath, 2005). The TO between two transcripts i and j is
computed as

ωij = lij +aij

min{ki,kj}+1−aij
,

where lij =∑
u

aiuauj represents the number of transcripts connected to both

transcripts i and j, while u indexes all the transcripts in the network.
Total node connectivity was computed as

ki =
∑

i

aij,

where j iterates over all other nodes in the network. For in-module
connectivity, j iterates over all nodes in the same module. To detect modules
or groups of coexpressed transcripts, the TO values are arranged in a
topological overlap matrix (TOM), which is clustered using the ‘dynamic tree
cut’algorithm (Langfelder et al., 2008); this procedure takes advantage of the
internal structure of the dendrogram in cutting the branches and identifying
modules. Once the network modules were identified, we validated their
membership by a permutation procedure. If the modules truly have statistical
and, potentially functional relevance, their average TO should be higher than
that of random groups of genes of similar size. We selected random groups
of genes, and we computed their average TO; a module was considered
validated if its average TO was higher than most random groups of genes,
with values of statistical significance based on the proportion of random
groups with higher TO than the module. This validation procedure guards
against detecting gene modules that are in fact artifacts of the clustering
procedure.

2.3 Gene ontology annotation of network modules
Network modules were tested for gene ontology (GO) enrichment
(Ashburner et al., 2000) using the GOstats R package (Falcon and
Gentleman, 2007). To adjust for the nested structure of the GO database,
we used a graph decorrelation procedure (Alexa et al., 2006). Significance
values were Bonferroni adjusted due to testing of each GO category against
multiple modules.

2.4 Module overlay with Allen Brain Atlas
The Allen Brain Atlas contains information about the spatial distribution of
genes within the mouse brain (Lein et al., 2007). Using the NeuroBlast
algorithm (Ng et al., 2009), it is possible to retrieve correlation values
between the spatial patterns of genes and compare this correlation structure
with the microarray coexpression (Iancu et al., 2010). For each gene,
NeuroBlast retrieves the top 250 genes with the most closely matched
spatial profiles. To test whether our network modules have significant spatial
overlap, we counted the number of ‘spatial edges’ between module genes.
A spatial edge is considered present between two genes when one gene is
between the top 250 genes most closely overlapping with the other gene.
The number of spatial edges in a module was compared with the number of
edges found in random groups of genes of the same size.

2.5 Evaluation of module preservation across datasets
To compare the network structure obtained from different platforms, we
employed the procedure outlined in Langfelder et al. (2011). Three methods
of evaluating module preservation are used: density based, connectivity-
based and tabulation-based. Density-based preservation evaluates whether
probes with strong pairwise relationships in one network have a pairwise
relationship that is significantly higher in the other network, regardless
of module assignment. Connectivity preservation evaluates whether node
connectivity in the two networks is similar. Tabulation-based preservation
implies that independently detected modules in the two networks
significantly overlap. We evaluated module preservation across platforms
via a permutation procedure, constructing modules of the same size but with
transcript membership comprising random groups of transcripts (Langfelder
et al., 2011). In tabulation-based preservation measure, the real module
assignment is compared against the random module assignment, and a set of
permutation-based overlap measures are computed. Statistical significance is
evaluated against this empirical distribution. Because P-values are often very
low, values are also normalized and more informative Z scores are reported:

Zobs = (obsa −μa)/σa,

where obsa is the preservation measure of the module and μ and σ are
the mean and SD of preservation measures derived from random groups
of genes. Under some assumptions, Z values are normally distributed with
mean 0 and standard deviation 1; values of Z between 2 and 10 provide
moderate support for module preservation while values >10 provide strong
support for preservation (Langfelder et al., 2011). In this study, we evaluate
aggregate measures of density and connectivity preservation corresponding
to equations (31) and (32) in Langfelder et al. (2011); additionally, we report a
Z summary statistic which is an average of density and connectivity Z values.

Density=
∑

i

∑
j=1 aij

n(n−1)
= mean(k)

n−1

Centralization= max(k)

n
−Density

Heterogeneity=
√

variance(k)

mean(k)
,

where k indicates connectivity values and n is the number of nodes.
Additionally, we report a measure of adjacency preservation based on
matrix correlation:

corADJ =cor(A1,A2),

where the matrix correlation is computed between the adjacency matrices
of the two networks.
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Fig. 1. High-level structure of the RNA-Seq coexpression network. Modules are denoted by arbitrary colors. (A) Dendrogram based on the topological overlap
between transcripts. (B) Multidimensional scaling plot of dissimilarities between genes, based on topological overlap. Module genes appear clustered together

For the tabulation-based preservation measure, each module in the test
network is compared with one of the modules in the base network; the
module chosen for comparison is the strongest counterpart based on number
of common nodes. Statistical significance and Z scores are evaluated using
randomly selected groups of nodes and measuring their overlap with the
module of interest.

3 RESULTS

3.1 Structure and properties of the RNA-Seq
coexpression network

A gene coexpression network was constructed using the normalized
RNA-Seq data (Bottomly et al., 2011), as outlined in Section 2. The
branches of the clustering tree correspond to modules or groups of
transcripts with similar coexpression profiles. We identified 21 initial
modules in RNA-Seq data; after validation using a bootstrapping
procedure (see Section 2), 18 modules displayed TO that was higher
than what can be expected for random groups of transcripts (Fig. 1).

Biological networks frequently display scale-free properties
(Barabasi and Oltvai, 2004), which for weighted networks implies
that the network connectivity (sum of connection strengths) is
exponentially distributed. In other words, a few nodes (denoted
as hubs) have high connectivity, while a much larger number of
nodes have small connectivity. We assessed how well our RNA-
Seq network conforms to this model of network structure by
computing the linear fit, log10(p(k))=c+g log10(k) where p(k) is
the proportion of nodes with connectivity k and c is a constant
(Zhang and Horvath, 2005). Because the network properties are
dependent on the parameter β (see Section 2), we evaluated the
fit and the average connectivity for a range of β parameters (Fig. 2).
On the basis of the scale-free fit criteria (Zhang and Horvath, 2005),
we chose a value of 10 for the soft-thresholding power.

3.2 Module biological annotation and neuroanatomical
properties

To evaluate the biological significance of the network modules, we
quantified the overlap between modules and GO categories. We
determined that most of the modules were associated with distinct

Fig. 2. Topological properties of the RNA-Seq network. (A) Scale-free fit
as function of soft threshold power. (B) Mean connectivity

GO categories (see Supplementary Table S1), signifying that there is
a level of distributed functionality within the transcriptome network.

Using microarray data from striatal samples, we have previously
detected a relationship between microarray coexpression and
spatial colocalization within the striatum (Iancu et al., 2010). We
inquired whether the same relationship with spatial colocalization
is detectable using RNA-Seq data. Using spatial colocalization
information available in the Allen Brain Atlas, we detected
significant spatial colocalization for four modules (significant at
α=0.05 after Bonferroni correction for comparison against 18
modules P<0.002).

3.3 Similarities and differences in network properties
across platforms

To have an unbiased comparison of network properties, we selected a
set of transcripts that had high connectivity across all three datasets:
for each dataset, we selected the transcripts with connectivity in
the top 50%; the intersection of these transcripts resulted in 3618
transcripts further used for network construction and comparison.
All parameters used in network construction were equal.
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Fig. 3. Comparison of network statistics. (A) Pairwise adjacencies. (B)
Coefficient of variability. (C) Transcript connectivity. (D) Ratio of module
versus total connectivity

One of the advantages of RNA-Seq versus microarray platforms is
the greater sensitivity (capacity to evaluate transcripts at extremely
low abundance levels), as well as a greater dynamic range, because
the detection technology is not susceptible to saturation. We inquired
whether these advantages translate into better ability to infer the
network structure. The basis for coexpression network structure is
the pairwise correlation between transcripts. It is conceivable that
in microarray studies the true expression levels are truncated below
because of the inability to detect low levels—and truncated above
because the detection technology is subject to saturation. If these
assumptions are correct, then we could expect that microarray data
would have lower levels of variability compared with RNA-Seq
data. Our results are concordant with these predictions: both the
pairwise correlations (network adjacency) and the coefficient of
variation are higher in the RNA-Seq versus the microarray platforms
(Fig. 3Aand B, respectively). The connectivity values are also higher
(Fig. 3C); this is expected given the fact that connectivity sums
adjacency values for each node. All comparisons of RNA-Seq versus
microarray values are highly significant (t-test P-value of <10−15).

Connectivity values can be separated between in-module
connectivity and out-module connectivity. For modular networks,
most of the connectivity lies within the module. We evaluate the
fraction of in-module connectivity for each transcript by the ratio
of module connectivity and total network connectivity. For all three
networks, large fractions of total connectivity are in-module: for the
Illumina microarray and RNA-Seq, the median values are 0.8 and
0.7, respectively, while for the Affymetrix platform the ratio was 0.4
(Fig. 3D); this could be a consequence of the lower adjacency and
connectivity values in the Affymetrix platform.

The global structure of networks can be evaluated using a
set of network statistics, including density, centrality and node
heterogeneity (Dong and Horvath, 2007): high centrality indicates
that a few modes have significantly higher connectivity values than
average, and node heterogeneity measures the degree of variability
in node connectivity values.

Table 1. Global network statistics comparison

Illumina array Affymetrix array RNA-Seq

Density 0.02 0.018 0.05
Centralization 0.08 0.05 0.12
Heterogeneity 0.83 0.64 0.83

Network density, centralization and heterogeneity are higher in RNA-Seq compared
with microarray networks.

Fig. 4. Rate of convergence of subsampled networks. Networks constructed
using a subset of the samples are compared with full-data network

We computed the network statistics for each of the three networks,
and we found that in most cases the RNA-Seq values are higher than
each of the microarray-derived quantities (Table 1).

One method of evaluating the robustness of network construction
is by constructing the network using a smaller number of samples
and evaluating how fast the network structure converges to the
final full-data network. Partial-data and full-data networks are
compared using matrix correlation. We applied this subsampling
procedure to our datasets and compared the convergence rates; this
revealed that the RNA-Seq data appears to converge faster than both
microarray platforms (Fig. 4). We suggest that the higher quality
of the sequencing data renders the network construction procedure
more robust to sample removal.

3.4 Evaluation of module preservation across platforms
We further evaluated whether modules detected independently in
the datasets retained their structure across platforms. We employed
three methods of evaluating module preservation: density-based
methods, connectivity-based methods and tabulation-based methods
(Langfelder et al., 2011). Density-based methods evaluate several
adjacency matrices; one adjacency matrix is denoted as the reference
matrix (Illumina microarray in our case). Modules are detected using
the reference adjacency matrix; the reference modules are then
evaluated for increased coexpression in each of the test datasets.
Connectivity-based methods evaluate whether node connectivity
values are preserved between networks. Tabulation-based methods
independently detect modules in each dataset; subsequently, these
modules are tested for significant overlap. Strong tabulation-based
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Table 2. Module preservation statistics of RNA-Seq and Illumina microarray modules

Module Module size Z overlap Z density Z connectivity Z matrix correlation Z summary

Black 160 −0.08 3.4 4.88 13.63 4.14
Blue 377 38.02 2.85 12.7 73.64 7.78
Green 238 5.04 5.29 4.76 13.78 5.03
Red 216 −0.6 5.2 9.54 31.49 7.37
Turquoise 1000 (truncated) 2.02 5.7 8.2 39.54 6.94
Yellow 240 −1.07 5.67 8.86 31.66 7.26

Module assignment based on Illumina network, arbitrary colors for modules. For computational efficiency, the large turquoise module has been
truncated to 1000 randomly selected member genes.

preservation implies that each module in a test dataset has one and
only one counterpart in the reference dataset.

Overall, we found that the density measures detected significant
preservation across the three networks structure, while tabulation-
based methods did not report preservation for all modules.

The preservation values for each module are summarized using
bootstrap-derived Z values, based on selecting random groups of
genes of the same size (see Section 2). We use the Illumina
microarray as the reference network, and we compare the other
two networks against it. Most density-based Z values were large,
signifying preservation above chance (Table 2). In contrast, using the
tabulation-based preservation measure, only about half the reference
modules appeared preserved in the RNA-Seq dataset.

4 DISCUSSION
Our results illustrate the advantages of RNA-Seq data in gene
coexpression network construction. Importantly, we find that the
increased dynamic range and accuracy of deep sequencing as
compared with microarray platforms allows better estimation
of network properties, such as network density, connectivity,
centralization and heterogeneity. We find that RNA-Seq estimates
of these values are generally higher than values derived from
microarray data; this is of interest because heterogeneity and
centralization distinguish hierarchical networks from purely random
networks (Ravasz et al., 2002). Note that several modules do
not appear preserved based on cross-tabulation-based preservation
measures. While this may reflect real differences between platforms,
it could also be due to the instability observed in many clustering
procedures (von Luxburg, 2010). A major advantage of the network-
based module preservation statistics (Z density, etc) used in this
article is that they do not require module assignment in the test
dataset and therefore, allow one to make rigorous claims regarding
module preservation. According to these preservation statistics, we
find that network module structure is significantly preserved across
platforms in particular with respect to density-based preservation
statistics. We derive functional annotation and neuroanatomical
features of the transcriptome that provide insights into the biological
mechanisms underlying the coexpression structure: we find that
genes that share functional annotation are often coexpressed, as are
genes that share spatial localization within the striatum.

Taken together, our results suggest that network approaches are a
promising avenue of integrative RNA-Seq data analysis.
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